萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

這是《腸道產(chǎn)業(yè)》第 160 篇文章

編者按:

肥胖作為一種慢性代謝性疾病,從多方面影響著人們的健康,還可以導(dǎo)致多種其它代謝性疾病的發(fā)展。目前由于人們生活、飲食習(xí)慣的變化,在當(dāng)代,肥胖患者越來越多。

發(fā)現(xiàn)益生菌或?qū)θ梭w健康有一些作用,那么它對于肥胖的預(yù)防或者治療有沒有什么幫助呢?

我們特別編譯了發(fā)表在 Microorganisms 上關(guān)于益生菌與肥胖的綜述,以詳細(xì)解答這個問題,闡述益生菌-腸道-肥胖三者之間的關(guān)系。

本文將分為上下 2 篇,今天為上半部分,以下是上半部分的編譯:

摘要:

肥胖及由肥胖所引起的健康風(fēng)險在現(xiàn)代社會中越來越受到重視。引起肥胖的主要因素有:過量的食物攝取、久坐的生活習(xí)慣、高糖和高脂的飲食習(xí)慣及遺傳因素等。

本綜述匯總了腸道微生物用于干預(yù)宿主代謝的最新進(jìn)展,評估了腸道微生物影響宿主代謝的一些重要的分子機(jī)制,比如膽鹽代謝、短鏈脂肪酸代謝和代謝性內(nèi)毒素血癥。

之前的一些研究發(fā)現(xiàn)了微生物與包括肥胖在內(nèi)的幾種疾病之間的聯(lián)系。因此,本綜述聚焦于腸道微生物和肥胖間的相互影響以及其影響肥胖的機(jī)制機(jī)理。

特別的,本綜述重點在于介紹一些飲食代替的治療方式,包括飲食變化和增加益生菌輔食。此外,有關(guān)糞菌移植、合生元和代謝組學(xué)等方法也在本文中有所涉及。(這在我們的下篇文章會有所詳述)

關(guān)鍵詞:肥胖;腸道微生物;益生菌;機(jī)制;飲食

正文:

簡介:肥胖與微生物

萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

肥胖是重要的健康問題之一,與許多慢性代謝疾病有相關(guān)性,比如高血壓、糖尿病和血脂異常。據(jù) 2016 年的統(tǒng)計顯示,在全球有超過 19 億成年人面臨肥胖問題1。

根據(jù)世界健康組織(World Health Organization,WHO)規(guī)定,成年人的體重指數(shù)(body mass index, BMI)大于 25 時為正常狀態(tài),當(dāng) BMI 大于 30 時可被認(rèn)定為肥胖1。肥胖人群的壽命要比正常人群短 7 年2。

在環(huán)境和基因的潛在影響下,肥胖現(xiàn)象近年來尤為嚴(yán)重。導(dǎo)致肥胖的全球環(huán)境因素包括運(yùn)動的減少、暴飲暴食、過多攝入高熱量食物、食用腌制食物和某些藥物的使用等。

此外,肥胖還與一些泌尿科疾病相關(guān),比如勃起功能障礙和前列腺增生,從而對健康產(chǎn)生不利影響2。

糧食及農(nóng)業(yè)組織(Food and Agriculture Organization, FAO)和 WTO 將益生菌(probiotics)定義為:活的微生物,當(dāng)適當(dāng)攝入時,可以給宿主帶來健康方面的好處4。

而每個人體內(nèi)都含有 1 到 2 千克的微生物,包含大約至少 1000 種不同的物種,10 萬億個微生物5,這些微生物對腸道黏膜和宿主免疫系統(tǒng)很重要。大部分的腸道菌群是細(xì)菌,它們占了糞便干重的 60%;真菌和原生動物也是腸道菌群的一部分,但是它們的功能尚不清楚6。

在食品產(chǎn)業(yè)中,有一些具有調(diào)節(jié)免疫應(yīng)答的益生菌被廣泛應(yīng)用,比如:干酪乳桿菌(L. casei)、約氏乳桿菌(L. johnsonii)、乳酸雙歧桿菌(B. lactis)、鼠李糖乳桿菌(L. rhamnosus)、釀酒酵母(S. cerevisiae)和動物雙歧桿菌(B. animals)7,8。

萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

研究發(fā)現(xiàn),格氏乳桿菌 BNR17(Lactobacillus gasseri-BNR17)具有抑制脂聯(lián)素和瘦素分泌的作用,能夠減少脂肪組織9。

其它益生菌,比如長雙歧桿菌(B.longum)、嗜酸乳桿菌(L.acidophilu s)、乳酸片球菌(P. acidilactici)和干酪乳桿菌(L. casei)等具有降膽固醇的作用10。

干酪乳桿菌可以通過抗氧化、免疫調(diào)節(jié)和抗糖尿病等作用來降低促炎因子的濃度,進(jìn)而減少氧化脅迫,并抑制 CD4 T 細(xì)胞的產(chǎn)生11,12。(編者注:氧化脅迫是指生物體中產(chǎn)生了大量氧化物質(zhì)如超氧基、過氧基等對生物不利的現(xiàn)象)

之前關(guān)于治療肥胖的研究已經(jīng)討論了轉(zhuǎn)化醫(yī)學(xué)的可能。根據(jù) Larsen 等人的觀點,肥胖雖然不是一種疾病,但卻是一種缺陷13。盡管之前的研究中沒有提供明確的治療方法,但是研究發(fā)現(xiàn)這一“缺陷”或可通過腸道微生物和代謝情況之間的聯(lián)系來調(diào)整14。

因此,最近的研究聚焦于通過攝取益生菌來調(diào)控有益菌群。我們期望通過這些益生菌以調(diào)控肥胖14。

在自身免疫疾病方面,比如 I 型糖尿病,發(fā)現(xiàn)了與肥胖類似的進(jìn)展7,15-17。

研究發(fā)現(xiàn)微生物群體的改變會引起機(jī)會致病菌的侵染,這些致病菌具有較強(qiáng)的氧化脅迫耐受能力、降低硫酸鹽濃度的能力和阻礙細(xì)菌產(chǎn)生丁酸的能力18。

在這種情況下,某些酶會參與到葡萄糖的動態(tài)穩(wěn)定過程中。當(dāng)外周胰島素產(chǎn)生的抗性或 B 細(xì)胞胰島素分泌不足的情況下就會導(dǎo)致失調(diào)19。

Hamad 等人發(fā)現(xiàn)格氏乳桿菌 SBT2055 可以降低瘦型 Zucker 鼠(常見基因性肥胖的動物模型)的腸系膜組織質(zhì)量和血清瘦素水平,并減小脂肪細(xì)胞大小20。

同時在肥胖或者消瘦型的 Zucker 大鼠中觀察到了血清和肝臟膽固醇含量的降低、糞便脂肪酸的改善和中性固醇的排泄現(xiàn)象。實驗所觀察到的三酰基甘油、磷脂等變化是由于淋巴吸收的減少。

另外,在使用了益生菌藥物后,發(fā)現(xiàn)總膽固醇、三酰甘油、高密度脂蛋白和低密度脂蛋白膽固醇的含量并沒有發(fā)生變化21,22。然而,由于對葡萄糖的敏感性增加,血糖水平出現(xiàn)降低23。

類似的,研究發(fā)現(xiàn)養(yǎng)樂多代田菌(L. casei Shirota)菌株也可以使飲食誘導(dǎo)的肥胖小鼠對胰島素的敏感性增加,并降低對葡萄糖的耐受性。

來源于小麥和大麥花的多種乳桿菌的發(fā)酵產(chǎn)物能夠抑制高脂飲食動物的體重增加,減少腎前和附睪脂肪含量和血清總膽固醇含量24;補(bǔ)充多種雙歧桿菌菌株可以抑制大鼠體重增加、血糖含量和瘦素濃度,但不引起大鼠脂肪墊的顯著改變15,25。

表 1 和表 2 匯總了一系列益生菌調(diào)控肥胖的試驗信息22

萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

表1 益生菌菌株對肥胖動物模型的有效性28

萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

表2. 益生菌與肥胖人群實驗28

另外,研究發(fā)現(xiàn),肥胖與硬壁菌門的增加和擬桿菌門的減少有一定聯(lián)系24,26。具體地,肥胖患者的擬桿菌門顯著降低,硬壁菌門的相對含量上升,這一現(xiàn)象或與血漿葡萄糖濃度相關(guān)27。

目前也有一些研究側(cè)重于探究一些益生元的作用,如阿拉伯木聚糖和阿拉伯木聚糖低聚果糖。這些益生元或能調(diào)控與肥胖相關(guān)的代謝異常。本綜述匯總了以往的研究,以支持益生菌或具有調(diào)控肥胖的作用。

腸道微生物的失調(diào)

腸道微生物與人類健康的聯(lián)系越來越頻繁且緊密。不穩(wěn)定的腸道微生物也就是腸道微生物失衡會導(dǎo)致潛在的炎癥性腸炎、艱難梭狀芽胞桿菌感染、肥胖和自身免疫紊亂23,41,42。

已經(jīng)有大量的研究探討了肥胖患者的腸道微生物菌群失調(diào)現(xiàn)象43,44。在人體重要的共生菌中除了擬桿菌門和硬壁菌門與肥胖相關(guān),還有許多其它微生物也與肥胖相關(guān)。在科水平上,腸桿菌科、普雷沃氏菌科均與肥胖相關(guān)。另外還發(fā)現(xiàn)克里斯氏菌科在低 BMI 人群中含量較高41,45。

研究發(fā)現(xiàn),發(fā)生了體重降低的成年人群中乳桿菌屬含量升高,但在超重或肥胖兒童中其含量也偏高46-49。擬桿菌屬的含量在肥胖人群中占比較高,并且此菌的豐度與 BMI 呈正相關(guān)49。羅斯氏菌(Roseburia) 屬的菌株對超重人群有一定的益處,由于肥胖人群攝入過多不易消化的多糖時,該類菌可以促進(jìn)排泄50-52。

此外,研究中也發(fā)現(xiàn)了 BMI 和雙歧桿菌之間的逆相關(guān)34。歐文氏菌屬(Erwinia),琥珀酸弧菌屬(Succinivibrio)53,另枝菌屬(Alistipes)54和顫螺菌屬(Oscillospira)55的豐度在正常體重人群中比肥胖人群中高56-60。

靈巧糞球菌(Coprococcus catus),Blautia hydrogenotrophica,布氏瘤胃球菌(Ruminococcus bromii),卵瘤胃球菌(Ruminococcus obeum)和凸腹真桿菌(Eubacterium ventriosum)與日本人群的肥胖現(xiàn)象有顯著的相關(guān)性60-62。

而多形擬桿菌(Bacteroides thetaiotaomicron),Bacteroides faecichinchillae,F(xiàn)lavonifractor plautii,Blautia wexlerae和 鮑氏梭菌(Clostridium bolteae)這些細(xì)菌則與體重較輕的人群相關(guān)63。

此外,腸道共生菌(Akkermansia muciniphila)已經(jīng)應(yīng)用于肥胖的輔助治療中63。

這些菌株在種的水平和菌株的水平上的多樣性導(dǎo)致了重量增加程度和肥胖程度差異性。因此,對腸道微生物和其背后的關(guān)聯(lián)機(jī)制現(xiàn)在已經(jīng)吸引了眾多研究者的關(guān)注64,65。

肥胖代謝的機(jī)制研究

一些導(dǎo)致肥胖的腸道菌群的功能機(jī)制如圖 1 所示:

萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

圖1 腸道微生物組與下游代謝的互作對肥胖的影響。

(1)膽汁酸代謝

膽汁酸與小腸中膳食脂肪的攝入息息相關(guān)。甘氨酸或者?;撬崤c在肝臟中合成的膽固醇相結(jié)合。在腸道中,細(xì)菌能夠通過分解并二羥基化的方式將原膽汁酸轉(zhuǎn)化為次級膽汁酸66。除了胃腸道,膽鹽也可以通過破壞膜的可靠性來抑制多種腸道菌群的生長,比如一些益生菌雙歧桿菌和乳桿菌67,68。

膽汁酸同樣也是法尼醇 X 受體(farnesoid X-receiving receptor,F(xiàn)XR)的配體。在一篇有關(guān) FXR 失活小鼠和野生小鼠的腸道微生物研究中,發(fā)現(xiàn)腸道微生物可以通過 FXR 信號促進(jìn)飲食肥胖69。

也有研究報道,G 蛋白偶聯(lián)膽汁酸受體 1(GPBAR1)/武田 G 蛋白偶聯(lián)受體 5(TGR5),這些受體的活性完全由膽汁酸激活,并可以通過釋放胃胰高血糖素樣肽-1 來實現(xiàn)葡萄糖的穩(wěn)態(tài)70。后續(xù)的研究也報道了 TGR5 在減肥手術(shù)中的抗肥胖功能。

高脂飲食的 FXR 失活小鼠通過糞菌移植后,發(fā)現(xiàn)了無菌小鼠的體重增長要比非無菌小鼠體重增長慢。這表明了腸道微生物可以引發(fā)飲食性肥胖71,72。(2)短鏈脂肪酸

在遠(yuǎn)端腸道的無氧環(huán)境中,不能被胃腸道消化吸收的多糖是細(xì)菌的分解底物73。短鏈脂肪酸(Short-chainfatty acids,SCFAs)中的主要成分是乙酸、丙酸、丁酸 SCFAs 在人體內(nèi)一天釋放大約 80-200 卡路里,大多數(shù)被各種器官所消耗74。

在肥胖患者中,糞便菌群中產(chǎn)丁酸鹽的細(xì)菌數(shù)量減少,這與飲食碳水化合物(如多糖、抗性淀粉和蔬菜低聚果糖)攝取的減少相關(guān)75。在低纖維飲食的患者中也觀察到了糞便丁酸含量、總 SCFAs 含量和雙歧桿菌量的減少76。

低纖維飲食已被證明可以通過維持胃粘膜菌群的穩(wěn)定性提高對病原體的敏感性。微生物所產(chǎn)生的 SCFAs 可以降低膽囊的 pH 值,為產(chǎn)生丁酸的細(xì)菌提供生態(tài)位,增加這些細(xì)菌的豐度從而改變腸道微生物組。

此外,SCFAs 除了具有提供能量和調(diào)控 pH 的功能外,SCFAs 還至少是 2 種 G 蛋白偶聯(lián)受體(Gpr41、Gpr)的信號分子77。因此,高纖維飲食可以通過 SCFAs 調(diào)控胃腸道及一些代謝途徑來協(xié)助肥胖的調(diào)控。(3)代謝性內(nèi)毒素血癥

長期以來,對肥胖都通過慢性炎癥和胰島素抗性來定義的78。在一些研究報道中,肥胖可以導(dǎo)致腸道滲透性和代謝性內(nèi)毒素血癥。肥胖和慢性炎癥之間的關(guān)系直到 Cani 等的研究才被闡明。

Cani 等發(fā)現(xiàn)高脂飲食會導(dǎo)致血漿脂多糖(LPS,LPS也被稱為細(xì)菌內(nèi)毒素)的升高,或者稱之為代謝性內(nèi)毒素血癥79。Cani 等將代謝性內(nèi)毒素血癥定義為一種慢性的高血漿 LPS 紊亂癥,其發(fā)病率比 LPS 敗血癥低 10 到 50 倍。

在正常飲食的肥胖小鼠中觀察到了代謝性內(nèi)毒素血癥(包括促炎癥和氧脅迫)。這些小鼠的正常飲食是由磨碎的小麥、玉米或燕麥、苜蓿和豆粕、含有礦物質(zhì)和維生素的蛋白質(zhì)組成的,因此這可能是肥胖飲食對正常小鼠誘導(dǎo)的結(jié)果56。

萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

在低脂飲食(low-fat diet,LFD)的小鼠中,硬壁菌門的數(shù)量顯著低于高脂飲食(high-fat diet,HFD)的小鼠。但是變形菌門的數(shù)量并沒有發(fā)生顯著變化80。在這些研究中,飲食內(nèi)毒素的增加與脂肪沉積、全身和組織特異性炎癥,以及胰島素抗性等增強(qiáng)相關(guān)79,81。

在健康人群中,代謝性內(nèi)毒素血癥可以減少 35%的胰島素敏感性,這與能量消耗相關(guān),并且可能是高脂、高卡路里飲食攝入而導(dǎo)致的一種結(jié)果81。

橫向、縱向研究還有一些實驗的補(bǔ)充結(jié)果都強(qiáng)調(diào)了代謝性內(nèi)毒素血癥在炎性肥胖和心臟代謝異常中的臨床意義。

(4)益生菌對血脂的作用

在近幾十年中,普遍認(rèn)為通過飲食攝取的脂類物質(zhì)可以調(diào)控炎癥、先天免疫機(jī)制、代謝通路82。膳食脂類物質(zhì)具有一定的營養(yǎng)價值,但是這些物質(zhì)也在核受體的相互作用(促炎癥)中發(fā)揮作用83。

這些受體包括過氧化物酶體增殖物活性受體(peroxisome proliferator active receptors,PPARs)家族和肝臟 X 受體(liver X receptors,LXRs)都是炎癥代謝通路中的中樞物質(zhì)。

許多脂肪酸可以激活 PPAR 家族的 3 個成員,從而增強(qiáng)胰島素的作用,并抑制了促炎細(xì)胞因子如 TNF-α 的生成84,85。

所有飲食代謝物和脂類物質(zhì)均可以激活 G-蛋白受體(Gprs)。比如,飲食代謝產(chǎn)生的乙酸可以激活 Gpr43 和削弱脂肪細(xì)胞中的脂減作用,這個現(xiàn)象是降低血漿游離脂肪酸水平的關(guān)鍵。這一結(jié)果表明了 Gpr43 在調(diào)控脂類物質(zhì)代謝中的潛在作用86,87。

Backhed 等發(fā)現(xiàn)微生物可以增加 Fiaf 的表達(dá)和活性從而降低體重88。還有研究證明了動脈粥樣硬化的病理生理與人群腸道微生物組的變化相關(guān)89。

富含磷脂酰膽堿的食物如:雞蛋,牛奶,魚,肝臟,家禽和紅肉,是飲食中膽堿的重要來源90。膽汁酸是脂質(zhì)代謝、膽固醇代謝的重要調(diào)節(jié)物質(zhì),它可以促進(jìn)營養(yǎng)物質(zhì)和微生物在腸道的吸收和轉(zhuǎn)運(yùn)。根據(jù)腸肝循環(huán),當(dāng)膽汁在肝臟中產(chǎn)生時 95%的膽汁酸被回腸末端吸收,然后被肝臟重新吸收。因此脂質(zhì)分解代謝會消耗酸。

腸道微生物通過對膽汁酸的二羥基化作用將原始膽鹽轉(zhuǎn)化為次級膽鹽66,91。當(dāng)攝入低劑量的抗生素時,會影響腸道微生物的組成并影響人體膽汁酸代謝,也會對一些糖類代謝造成影響92,93 。

在鼠模型中膽汁酸可以促進(jìn) GLP-1 的分泌,導(dǎo)致 TGR5 受體的激活。然而,一些研究尚未找到可在減肥手術(shù)前幾天使用的,針對代謝的高濃度血漿膽汁酸94。(5)微生物組與肥胖:從腸道到大腦

欲望、食物攝取和能量平衡是復(fù)雜神經(jīng)內(nèi)分泌因子和受體網(wǎng)絡(luò)的重要組成部分,該網(wǎng)絡(luò)調(diào)控了胃腸道和大腦之間的代謝通路95。進(jìn)食后,營養(yǎng)物質(zhì)在消化道的移動可以激活復(fù)雜的神經(jīng)和激素信號。因此,腸道菌群可以認(rèn)為是第二個大腦。

越來越多的證據(jù)表明多巴胺、腎上腺素、去甲腎上腺素、γ-氨基丁酸、血清素、吲哚代謝物和其他一些腸道微生物受體可以影響飲食偏好。

由自主神經(jīng)系統(tǒng)的傳入神經(jīng)纖維(如迷走神經(jīng))介導(dǎo)的信號,將信息從腸道發(fā)送至孤核(NTS)和效應(yīng)纖維,然后投射至腸的平滑肌。NTS 信息發(fā)布至下丘腦,可以調(diào)控 ARC 神經(jīng)元的能量平衡食欲和飲食攝入。ARC 提供與agouti和厭食癥肽相關(guān)的致病性神經(jīng) Y 家族肽,并調(diào)節(jié)原黑皮質(zhì)素的轉(zhuǎn)錄12,88。

其它外周胃腸道的多肽包括胰多肽和酪酪肽可以降低食欲。Neuromedin U 和 Neuromedin S 兩種神經(jīng)肽可以抑制食欲,而黑色素濃縮激素和兩種食欲肽(orexin A 和 orexin B)則會促進(jìn)食欲。

此外,Y 家族神經(jīng)肽主要由腸內(nèi)分泌細(xì)胞產(chǎn)生和分泌,而這些內(nèi)分泌細(xì)胞主要聚集在胃腸道壁中96,97。

由腸道微生物產(chǎn)生的短鏈脂肪酸等代謝產(chǎn)物可以與腸內(nèi)分泌細(xì)胞受體相結(jié)合并改善腸內(nèi)激素的釋放進(jìn)入全身循環(huán)。

在動物和人類的研究中發(fā)現(xiàn),腸道微生物發(fā)酵不可消化碳水化合物可以增加 SCFAs 的產(chǎn)生和腸道激素的分泌98。由腸道微生物產(chǎn)生的乙酸是 SCFA 的主要物質(zhì)99。然而,由于微生物組的改變所導(dǎo)致的乙酸含量的增加可以引起副交感神經(jīng)系統(tǒng)的激活,促進(jìn)葡萄糖的轉(zhuǎn)運(yùn)、胃泌素的分泌和肥胖97,100。

其他對于無菌小鼠的研究發(fā)現(xiàn)腸甜味信號蛋白 T1R2 的上調(diào)可以導(dǎo)致碳水化合物的過量攝入101。某些乳酸菌可以將谷氨酸轉(zhuǎn)化為 γ 氨基丁酸,并表達(dá) GABA 結(jié)合蛋白102,103和血清素95,97,104-106,以調(diào)節(jié)食欲。

血清素可以通過調(diào)節(jié)食欲抑制作用來介導(dǎo)黑皮質(zhì)素對食欲的影響102。在另一項對無菌小鼠的研究中,腸道甜味信號蛋白可以引起甜味營養(yǎng)物質(zhì)的更多攝入64,68,103,107??刂企w重穩(wěn)態(tài)的黑素皮質(zhì)素神經(jīng)元的調(diào)節(jié)具有降低食欲的作用108,109。

γ 氨基丁酸作為中樞神經(jīng)系統(tǒng)的主要抑制劑,可以促進(jìn)進(jìn)食和下丘腦 ARC 表達(dá)蛋白的模糊神經(jīng)元的突觸放電,并控制能量平衡(圖 2)108,110-112。因此,闡明腦腸軸和人體微生物組之間的聯(lián)系機(jī)制,可以為肥胖和代謝紊亂提供潛在的治療方法。

萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

圖 2. 微生物組的變化表明,腸道失衡可能會對人體生理產(chǎn)生不利影響,導(dǎo)致腸道腦軸信號不正確以及對中樞神經(jīng)系統(tǒng)(CNS)功能的相關(guān)影響,從而導(dǎo)致肥胖。相反,中樞神經(jīng)系統(tǒng)水平的壓力會影響腸道功能并導(dǎo)致微生物群紊亂。

GABA,即 γ-氨基丁酸。(右箭頭)指示內(nèi)毒素、炎性和胰島素抵抗的逐漸增加,這與焦慮、社交改變、敏感性應(yīng)激抑郁、惡心、能量損失和疼痛的增強(qiáng)水平(左箭頭)有關(guān)。

參考文獻(xiàn):

1. World Health Organization. Overweightand Obesity. Available online:http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight(accessed on 25 September 2018).

2. Van Baal, P.H.; Hoogenveen, R.T.; deWit, A.G.; Boshuizen, H.C. Estimating health-adjusted life expectancyconditional on risk factors: Results for smoking and obesity. Popul. HealthMetrics 2006, 4, 14.

3. Nascimento Ferreira, M.V.;Rendo-Urteaga, T.; De Moraes, A.C.; Moreno, L.A.; Carvalho, H.B. AbdominalObesity in Children: The Role of Physical Activity, Sedentary Behavior, andSleep Time. In Nutrition in the Prevention and Treatment of Abdominal Obesity;Academic Press: Cambridge, MA, USA, 2019; pp. 81–94. [Google Scholar]

4. FAO; WHO. Guidelines for the Evaluationof Probiotics in Foods. Report of a Joint FAO/WHO Working Group on DraftingGuidelines for the Evaluation of Probiotics in Food; FAO: Rome, Italy; WHO:Geneva, Switzerland, 2002. [Google Scholar]

5. Rajili?-Stojanovi?, M.; De Vos, W.M. Thefirst 1000 cultured species of the human gastrointestinal microbiota. FEMSMicrobiol. Rev. 2014, 38, 996–1047.

6. Blandino, G.; Inturri, R.; Lazzara, F.;Di Rosa, M.; Malaguarnera, L. Impact of gut microbiota on diabetes mellitus.Diabetes Metab. 2016, 42, 303–315.

7. Gill, H.; Prasad, J. Probiotics,immunomodulation, and health benefits. Adv. Exp. Med. Biol. 2008, 206, 423–454.[Google Scholar]

8. Ashraf, R.; Shah, N.P. Immune SystemStimulation by Probiotic Microorganisms. Crit. Rev. Food Sci. Nutr. 2014, 54,938–956.

9. Kang, J.-H.; Yun, S.-I.; Park, M.-H.;Park, J.-H.; Jeong, S.-Y.; Park, H.-O. Anti-Obesity Effect of Lactobacillusgasseri BNR17 in High-Sucrose Diet-Induced Obese Mice. PLoS ONE 2013, 8,e54617.

10. Park, Y.H.; Kim, J.G.; Shin, Y.W.; Kim,H.S.; Kim, Y.-J.; Chun, T.; Kim, S.H.; Whang, K.Y. Effects of Lactobacillusacidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacteriumlongum on the serum cholesterol level and fecal sterol excretion inhypercholesterolemia-induced pigs. Biosci. Biotechnol. Biochem. 2008, 72,595–600.

11. Sharma, P.; Bhardwaj, P.; Singh, R.Administration of Lactobacillus casei and Bifidobacterium bifidum AmelioratedHyperglycemia, Dyslipidemia, and Oxidative Stress in Diabetic Rats. Int. J.Prev. Med. 2016, 7, 102. [Google Scholar]

12. So, J.-S.; Kwon, H.-K.; Lee, C.-G.; Yi,H.-J.; Park, J.-A.; Lim, S.-Y.; Hwang, K.-C.; Jeon, Y.H.; Im, S.-H.Lactobacillus casei suppresses experimental arthritis by down-regulating Thelper 1 effector functions. Mol. Immunol. 2008, 45, 2690–2699.

13. Larsen, N.; Vogensen, F.K.; Berg,F.W.J.V.D.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Abu Al-Soud, W.;S?rensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut Microbiota in Human Adults withType 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE 2010, 5, e9085.

14. Kong, Y.; He, M.; McAlister, T.;Seviour, R.; Forster, R. Quantitative Fluorescence In Situ Hybridization ofMicrobial Communities in the Rumens of Cattle Fed Different Diets. Appl.Environ. Microbiol. 2010, 76, 6933–6938.

15. Barrett, E.; Ross, R.; O’Toole, P.;Fitzgerald, G.; Stanton, C. γ-Aminobutyric acid production by culturablebacteria from the human intestine. J. Appl. Microbiol. 2012, 113, 411–417.

16. Khalili, L.; Alipour, B.; Jafar-Abadi,M.A.; Faraji, I.; Hassanalilou, T.; Abbasi, M.M.; Vaghef-Mehrabany, E.; Sani,M.A. The Effects of Lactobacillus casei on Glycemic Response, Serum Sirtuin1and Fetuin-A Levels in Patients with Type 2 Diabetes Mellitus: A RandomizedControlled Trial. Iran. Biomed. J. 2019, 23, 68–77.

17. Sabico, S.; Al-Mashharawi, A.;Al-Daghri, N.M.; Wani, K.; Amer, O.E.; Hussain, D.S.; Ansari, M.G.; Masoud,M.S.; Alokail, M.S.; McTernan, P.G. Effects of a 6-month multi-strain probioticssupplementation in endotoxemic, inflammatory and cardiometabolic status of T2DMpatients: A randomized, double-blind, placebo-controlled trial. Clin. Nutr.2018, 38, 1563–1569.

18. Hu, C.; Wong, F.S.; Wen, L. Type 1diabetes and gut microbiota: Friend or foe? Pharmacol. Res. 2015, 98, 9–15.

19. Ljungberg, M.; Korpela, R.; Ilonen, J.;Ludvigsson, J.; Vaarala, O. Probiotics for the Prevention of Beta CellAutoimmunity in Children at Genetic Risk of Type 1 Diabetes—The PRODIA Study.Ann. N. Y. Acad. Sci. 2006, 1079, 360–364.

20. Hartstra, A.V.; Bouter, K.E.; B?ckhed,F.; Nieuwdorp, M. Insights into the role of the microbiome in obesity and type2 diabetes. Diabetes Care 2015, 38, 159–165.

21. Grover, S.; Rashmi, H.M.; Srivastava,A.K.; Batish, V.K. Probiotics for human health—New innovations and emergingtrends. Gut Pathog. 2012, 4, 15.

22. Szulinska, M.; ?oniewski, I.; VanHemert, S.; Sobieska, M.; Bogdański, P. Dose-Dependent Effects of MultispeciesProbiotic Supplementation on the Lipopolysaccharide (LPS) Level andCardiometabolic Profile in Obese Postmenopausal Women: A 12-Week RandomizedClinical Trial. Nutrients 2018, 10, 773.

23. Chan, P.A.; Robinette, A.; Montgomery,M.; Almonte, A.; Cu-Uvin, S.; Lonks, J.R.; Chapin, K.C.; Kojic, E.M.; Hardy,E.J. Extragenital Infections Caused by Chlamydia trachomatis and Neisseriagonorrhoeae: A Review of the Literature. Infect. Dis. Obstet. Gynecol. 2016,2016, 1–17.

24. Le Barz, M.; Anhê, F.F.; Varin, T.V.;Desjardins, Y.; Levy, E.; Roy, D.; Urdaci, M.C.; Marette, A. Probiotics asComplementary Treatment for Metabolic Disorders. Diabetes Metab. J. 2015, 39,291–303.

25. International Diabetes Federation. IDFDiabetes Atlas; IDF: Watermael-Boitsfort, Belgium, 2017. Available online:http://www.diabetesatlas.org/resources/2017-atlas.html (accessed on 12 July2019).

26. Kobyliak, N.; Conte, C.; Cammarota, G.;Haley, A.P.; ?tyriak, I.; Gaspar, L.; Fusek, J.; Rodrigo, L.; Kruzliak, P.Probiotics in prevention and treatment of obesity: A critical view. Nutr. Metab.2016, 13, 14.

27. Barrett, H.L.; Callaway, L.K.; Nitert,M.D. Probiotics: A potential role in the prevention of gestational diabetes?Acta Diabetol. 2012, 49, 1–13.

28. Mishra, A.K.; Dubey, V.; Ghosh, A.R.;Information, P.E.K.F.C. Obesity: An overview of possible role(s) of guthormones, lipid sensing and gut microbiota. Metablism 2016, 65, 48–65.

29. Zhao, X.; Higashikawa, F.; Noda, M.;Kawamura, Y.; Matoba, Y.; Kumagai, T.; Sugiyama, M. The Obesity and Fatty LiverAre Reduced by Plant-Derived Pediococcus pentosaceus LP28 in High FatDiet-Induced Obese Mice. PLoS ONE 2012, 7, e30696.

30. Park, S.-Y.; Cho, S.-A.; Lee, M.-K.;Lim, S.-D. Effect of Lactobacillus plantarum FH185 on the Reduction ofAdipocyte Size and Gut Microbial Changes in Mice with Diet-induced Obesity.Food Sci. Anim. Resour. 2015, 35, 171–178.

31. Park, S.; Ji, Y.; Jung, H.Y.; Park, H.;Kang, J.; Choi, S.H.; Shin, H.; Hyun, C.K.; Kim, K.T.; Holzapfel, W.H.Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissueaccumulation in a diet-induced obesity murine model. Appl. Microbiol.Biotechnol. 2017, 101, 1605–1614.

32. Wu, C.-C.; Weng, W.-L.; Lai, W.-L.;Tsai, H.-P.; Liu, W.-H.; Lee, M.-H.; Tsai, Y.-C. Effect of Lactobacillusplantarum Strain K21 on High-Fat Diet-Fed Obese Mice. Evid. Based Complement.Altern. Med. 2015, 2015, 1–9. [Google Scholar]

33. Park, J.E.; Oh, S.H.; Cha, Y.S.Lactobacillus plantarum LG42 isolated from gajami sik-hae decreases body andfat pad weights in diet-induced obese mice. J. Appl. Microbiol. 2014, 116,145–156.

34. Callaway, L.K.; McIntyre, H.D.;Barrett, H.L.; Foxcroft, K.; Tremellen, A.; Lingwood, B.E.; Tobin, J.M.;Wilkinson, S.; Kothari, A.; Morrison, M.; et al. Probiotics for the Preventionof Gestational Diabetes Mellitus in Overweight and Obese Women: Findings Fromthe SPRING Double-blind Randomized Controlled Trial. Diabetes Care 2019, 42,dc182248.

35. Okesene-Gafa, K.A.M.; Li, M.; McKinlay,C.J.D.; Taylor, R.S.; Rush, E.C.; Wall, C.R.; Wilson, J.; Murphy, R.; Taylor,R.; Thompson, J.M.D.; et al. Effect of antenatal dietary interventions inmaternal obesity on pregnancy weight-gain and birthweight: Healthy Mums andBabies (HUMBA) randomized trial. Am. J. Obstet. Gynecol. 2019, 221, 1–13.

36. Krumbeck, J.A.; Rasmussen, H.E.;Hutkins, R.W.; Clarke, J.; Shawron, K.; Keshavarzian, A.; Walter, J. ProbioticBifidobacterium strains and galacto oligosaccharides improve intestinal barrierfunction in obese adults but show no synergism when used together assynbiotics. Microbiome 2018, 6, 121.

37. Kim, J.; Yun, J.M.; Kim, M.K.; Kwon,O.; Cho, B. Lactobacillus gasseri BNR17 Supplementation Reduces the VisceralFat Accumulation and Waist Circumference in Obese Adults: A Randomized,Double-Blind, Placebo-Controlled Trial. J. Med. Food 2018, 21, 454–461.

38. Minami, J.; Iwabuchi, N.; Tanaka, M.;Yamauchi, K.; Xiao, J.-Z.; Abe, F.; Sakane, N. Effects of Bifidobacterium breveB-3 on body fat reductions in pre-obese adults: A randomized, double-blind,placebo-controlled trial. Biosci. Microbiota Food Health 2018, 37, 67–75.

39. Ogawa, A.; Kadooka, Y.; Kato, K.;Shirouchi, B.; Sato, M. Lactobacillus gasseri SBT2055 reduces postprandial andfasting serum non-esterified fatty acid levels in Japanesehypertriacylglycerolemic subjects. Lipids Health Dis. 2014, 13, 36.

40. Dietrich, C.G.; Kottmann, T.; Alavi, M.Commercially available probiotic drinks containing Lactobacillus caseiDN-114001 reduce antibiotic-associated diarrhea. World J. Gastroenterol. 2014,20, 15837–15844.

41. Iqbal, M.Z.; Qadir, M.I.; Hussain, T.;Janbaz, K.H.; Khan, Y.H.; Ahmad, B. Review: Probiotics and their beneficialeffects against various diseases. Pak. J. Pharm. Sci. 2014, 27, 405–415.[Google Scholar]

42. Slavin, J. Fiber and Prebiotics:Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435.

43. Bejar, W.; Hamden, K.; Ben Salah, R.;Chouayekh, H. Lactobacillus plantarum TN627 significantly reduces complicationsof alloxan-induced diabetes in rats. Anaerobe 2013, 24, 4–11.

44. Sakai, T.; Taki, T.; Nakamoto, A.;Shuto, E.; Tsutsumi, R.; Toshimitsu, T.; Makino, S.; Ikegami, S. Lactobacillusplantarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fatdiet. J. Nutr. Sci. Vitaminol. 2013, 59, 144–147.

45. Yakovlieva, M.; Tacheva, T.; Mihaylova,S.; Tropcheva, R.; Trifonova, K.; Tolesmall ka, C.A.; Danova, S.; Vlaykova, T.Influence of Lactobacillus brevis 15 and Lactobacillus plantarum 13 on bloodglucose and body weight in rats after high-fructose diet. Benef. Microbes 2015,6, 505–512.

46. Huang, H.-Y.; Korivi, M.; Tsai, C.-H.;Yang, J.-H.; Tsai, Y.-C. Supplementation of Lactobacillus plantarum K68 andFruit-Vegetable Ferment along with High Fat-Fructose Diet Attenuates MetabolicSyndrome in Rats with Insulin Resistance. Evid. Based Complement. Altern. Med.2013, 2013, 1–12. [Google Scholar]

47. Li, X.; Yin, B.; Fang, D.; Jiang, T.;Zhao, J.; Wang, N.; Fang, S.; Zhang, H.; Wang, G.; Chen, W. Effects ofLactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance inhigh-fat and streptozotocin-induced type 2 diabetic mice. J. Appl. Microbiol.2016, 121, 1727–1736.

48. Zuo, T.; Ng, S.C. The Gut Microbiota inthe Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front.Microbiol. 2018, 9, 2247.

49. Opazo, M.C.; Ortega-Rocha, E.M.;Coronado-Arrázola, I.; Bonifaz, L.C.; Boudin, H.; Neunlist, M.; Bueno, S.M.;Kalergis, A.M.; Riedel, C.A. Intestinal microbiota influences non-intestinalrelated autoimmune diseases. Front. Microbiol. 2018, 9, 432.

50. Jumpertz, R.; Le, D.S.; Turnbaugh,P.J.; Trinidad, C.; Bogardus, C.; Gordon, J.I.; Krakoff, J. Energy-balancestudies reveal associations between gut microbes, caloric load, and nutrientabsorption in humans. Am. J. Clin. Nutr. 2011, 94, 58–65.

51. Ignacio, A.; Fernandes, M.; Rodrigues,V.; Groppo, F.; Cardoso, A.; Avila-Campos, M.; Nakano, V.; Avila-Campos, M.Correlation between body mass index and faecal microbiota from children. Clin.Microbiol. Infect. 2016, 22, 1–8.

52. Patil, D.P.; Dhotre, D.P.; Chavan,S.G.; Sultan, A.; Jain, D.S.; Lanjekar, V.B.; Gangawani, J.; Shah, P.S.;Todkar, J.S.; Shah, S.; et al. Molecular analysis of gut microbiota in obesityamong Indian individuals. J. Biosci. 2012, 37, 647–657.

53. Zhang, H.; DiBaise, J.K.; Zuccolo, A.;Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.;Rittmann, B.E.; et al. Human gut microbiota in obesity and after gastricbypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370.

54. Santacruz, A.; Collado, M.C.;García-Valdés, L.; Segura, M.T.; Martín-Lagos, J.A.; Anjos, T.; Martí-Romero,M.; Lopez, R.M.; Florido, J.; Campoy, C.; et al. Gut microbiota composition isassociated with body weight, weight gain and biochemical parameters in pregnantwomen. Br. J. Nutr. 2010, 104, 83–92.

55. Allen, J.M.; Jaggers, R.M.; Solden,L.M.; Loman, B.R.; Davies, R.H.; Mackos, A.R.; Ladaika, C.A.; Berg, B.M.;Chichlowski, M.; Bailey, M.T. Dietary oligosaccharides attenuate stress-induceddisruptions in immune reactivity and microbial B-vitamin metabolism. FrontImmunol. 2019, 10, 1774.

56. Fei, N.; Zhao, L. An opportunisticpathogen isolated from the gut of an obese human causes obesity in germfreemice. ISME J. 2013, 7, 880–884.

57. Bervoets, L.; Van Hoorenbeeck, K.;Kortleven, I.; Van Noten, C.; Hens, N.; Vael, C.; Goossens, H.; Desager, K.N.;Vankerckhoven, V. Differences in gut microbiota composition between obese andlean children: A cross-sectional study. Gut Pathog. 2013, 5, 10.

58. Duncan, S.H.; Belenguer, A.; Holtrop,G.; Johnstone, A.M.; Flint, H.J.; Lobley, G.E. Reduced dietary intake ofcarbohydrates by obese subjects results in decreased concentrations of butyrateand butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 2007, 73,1073–1078.

59. Costa, F.R.; Fran?ozo, M.C.; DeOliveira, G.G.; Ignacio, A.; Castoldi, A.; Zamboni, D.S.; Ramos, S.G.; Camara,N.O.; De Zoete, M.R.; Palm, N.W.; et al. Gut microbiota translocation to thepancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset.J. Exp. Med. 2016, 213, 1223–1239.

60. Murugesan, S.; Ulloa-Martínez, M.;Martinez-Rojano, H.; Galván-Rodríguez, F.M.; Miranda-Brito, C.; Romano, M.C.;Pi?a-Escobedo, A.; Pizano-Zárate, M.L.; Hoyo-Vadillo, C.; García-Mena, J. Studyof the diversity and short-chain fatty acids production by the bacterialcommunity in overweight and obese Mexican children. Eur. J. Clin. Microbiol.Infect. Dis. 2015, 34, 1337–1346.

61. Verdam, F.J.; Fuentes, S.; De Jonge,C.; Zoetendal, E.G.; Erbil, R.; Greve, J.W.; Buurman, W.A.; De Vos, W.M.;Rensen, S.S. Human intestinal microbiota composition is associated with localand systemic inflammation in obesity. Obesity 2013, 21, E607–E615.

62. Kasai, C.; Sugimoto, K.; Moritani, I.;Tanaka, J.; Oya, Y.; Inoue, H.; Tameda, M.; Shiraki, K.; Ito, M.; Takei, Y.; etal. Comparison of the gut microbiota composition between obese and non-obeseindividuals in a Japanese population, as analyzed by terminal restrictionfragment length polymorphism and next-generation sequencing. BMC Gastroenterol.2015, 15, 100.

63. Payahoo, L.; Khajebishak, Y.;Ostadrahimi, A. Akkermansia muciniphila bacteria: A new perspective on themanagement of obesity: An updated review. Rev. Med. Microbiol. 2019, 30, 83–89.

64. Million, M.; Angelakis, E.; Paul, M.;Armougom, F.; Leibovici, L.; Raoult, D. Comparative meta-analysis of the effectof Lactobacillus species on weight gain in humans and animals. Microb. Pathog.2012, 53, 100–108.

65. Qiao, Y.; Sun, J.; Xia, S.; Li, L.; Li,Y.; Wang, P.; Shi, Y.; Le, G. Effects of different Lactobacillus reuteri oninflammatory and fat storage in high-fat diet-induced obesity mice model. J.Funct. Foods 2015, 14, 424–434.

66. Ridlon, J.M.; Kang, D.J. Hylemon PB.Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006,47, 241–259.

67. Binder, H.J.; Filburn, B.; Floch, M.Bile acid inhibition of intestinal anaerobic organisms. Am. J. Clin. Nutr.1975, 28, 119–125.

68. Kurdi, P.; Kawanishi, K.; Mizutani, K.;Yokota, A. Mechanism of Growth Inhibition by Free Bile Acids in Lactobacilliand Bifidobacteria. J. Bacteriol. 2006, 188, 1979–1986.

69. Fiorucci, S.; Mencarelli, A.;Palladino, G.; Cipriani, S. Bile-acid-activated receptors: Targeting TGR5 andfarnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol. Sci.2009, 30, 570–580.

70. Thomas, C.; Gioiello, A.; Noriega, L.;Strehle, A.; Oury, J.; Rizzo, G.; Macchiarulo, A.; Yamamoto, H.; Mataki, C.;Pruzanski, M.; et al. TGR5-mediated bile acid sensing controls glucosehomeostasis. Cell Metab. 2009, 10, 167–177.

71. McGavigan, A.K.; Garibay, D.; Henseler,Z.M.; Chen, J.; Bettaieb, A.; Haj, F.G.; Ley, R.E.; Chouinard, M.L.; Cummings,B.P. TGR5 contributes to glucoregulatory improvements after vertical sleevegastrectomy in mice. Gut 2017, 66, 226–234.

72. Parséus, A.; Sommer, N.; Sommer, F.;Caesar, R.; Molinaro, A.; St?hlman, M.; Greiner, T.U.; Perkins, R.; B?ckhed, F.Microbiota-induced obesity requires farnesoid X receptor. Gut 2017, 66,429–437.

73. Flint, H.J.; Bayer, E.A.; Rincon, M.T.;Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potentialfor new insights from genomic analysis. Nat. Rev. Genet. 2008, 6, 121–131.

74. Riley, L.W.; Raphael, E.; Faerstein, E.Obesity in the United States—Dysbiosis from Exposure to Low-Dose Antibiotics?Front. Public Health 2013, 1, 69.

75. Canfora, E.E.; Meex, R.C.; Venema, K.;Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev.Endocrinol. 2019, 1.

76. Brinkworth, G.D.; Noakes, M.; Clifton,P.M.; Bird, A.R. Comparative effects of very low-carbohydrate, high-fat andhigh-carbohydrate, low-fat weight-loss diets on bowel habit and faecalshort-chain fatty acids and bacterial populations. Br. J. Nutr. 2009, 101,1493.

77. Brown, A.J.; Goldsworthy, S.M.; Barnes,A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.;Kinghorn, I.; Fraser, N.J.; et al. The Orphan G protein-coupled receptors GPR41and GPR43 are activated by propionate and other short chain carboxylic acids.J. Biol. Chem. 2003, 278, 11312–11319.

78. Xu, H.; Barnes, G.T.; Yang, Q.; Tan,G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.;et al. Chronic inflammation in fat plays a crucial role in the development ofobesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830.

79. Cani, P.D.; Amar, J.; Iglesias, M.A.;Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.;Chabo, C.; et al. Metabolic Endotoxemia Initiates Obesity and InsulinResistance. Diabetes 2007, 56, 1761–1772.

80. Dalby, M.J.; Aviello, G.; Ross, A.W.;Walker, A.W.; Barrett, P.; Morgan, P.J. Diet induced obesity is independent ofmetabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamicexpression of the acute phase protein, SerpinA3N. Sci. Rep. 2018, 8, 15648.

81. Amar, J.; Burcelin, R.; Ruidavets,J.B.; Cani, P.D.; Fauvel, J.; Alessi, M.C.; Chamontin, B.; Ferriéres, J. Energyintake is associated with endotoxemia in apparently healthy men. Am. J. Clin.Nutr. 2008, 87, 1219–1223.

82. Hotamisligil, G.S. Inflammation andmetabolic disorders. Nature 2006, 444, 860–867.

83. Chawla, A. Nuclear Receptors and LipidPhysiology: Opening the X-Files. Science 2001, 294, 1866–1870.

84. Glass, C.K.; Ogawa, S. Combinatorial rolesof nuclear receptors in inflammation and immunity. Nat. Rev. Immunol. 2006, 6,44–55.

85. Wellen, K.E.; Hotamisligil, G.S.Inflammation, stress, and diabetes. J. Clin. Investig. 2005, 115,1111–1119.

86. Ge, H.; Li, X.; Weiszmann, J.; Wang,P.; Baribault, H.; Chen, J.-L.; Tian, H.; Li, Y. Activation of GProtein-Coupled Receptor 43 in Adipocytes Leads to Inhibition of Lipolysis andSuppression of Plasma Free Fatty Acids. Endocrinology 2008, 149,4519–4526.

87. Semenkovich, C.F. Insulin resistanceand atherosclerosis. J. Clin. Investig. 2006, 116, 1813–1822.

88. B?ckhed, F.; Ding, H.; Wang, T.;Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gutmicrobiota as an environmental factor that regulates fat storage. Proc. Natl.Acad. Sci. USA 2004, 101, 15718–15723.

89. Shapiro, H.; Suez, J.; Elinav, E.Personalized microbiome-based approaches to metabolic syndrome management andprevention. J. Diabetes 2017, 9, 226–236.

90. Wang, Z.; Klipfell, E.; Bennett, B.J.;Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.;Chung, Y.-M.; et al. Gut flora metabolism of phosphatidylcholine promotescardiovascular disease. Nature 2011, 472, 57–63.

91. Koeth, R.A.; Wang, Z.; Levison, B.S.;Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al.Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat,promotes atherosclerosis. Nat. Med. 2013, 19, 576–585.

92. Chiang, J.Y.L. Bile acids: Regulationof synthesis. J. Lipid Res. 2009, 50, 1955–1966.

93. Vrieze, A.; Out, C.; Fuentes, S.;Jonker, L.; Reuling, I.; Kootte, R.S.; Van Nood, E.; Holleman, F.; Knaapen, M.;Romijn, J.A.; et al. Impact of oral vancomycin on gut microbiota, bile acidmetabolism, and insulin sensitivity. J. Hepatol. 2014, 60, 824–831.

94. Reijnders, D.; Goossens, G.H.; Hermes,G.D.; Neis, E.P.; Van Der Beek, C.M.; Most, J.; Holst, J.J.; Lenaerts, K.;Kootte, R.S.; Nieuwdorp, M.; et al. Effects of Gut Microbiota Manipulation byAntibiotics on Host Metabolism in Obese Humans: A Randomized Double-BlindPlacebo-Controlled Trial. Cell Metab. 2016, 24, 341.

95. Delgado, T.C. Glutamate and GABA inAppetite Regulation. Front. Endocrinol. 2013, 4, 103.

96. Duca, F.A.; Swartz, T.D.; Sakar, Y.;Covasa, M. Increased Oral Detection, but Decreased Intestinal Signaling forFats in Mice Lacking Gut Microbiota. PLoS ONE 2012, 7, e39748.

97. Ley, R.E.; B?ckhed, F.; Turnbaugh, P.;Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbialecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075.

98. Turnbaugh, P.J.; Gordon, J.I. The coregut microbiome, energy balance and obesity. J. Physiol. 2009, 587, 4153–4158.

99. Ussar, S.; Griffin, N.W.; Bézy, O.;Fujisaka, S.; Vienberg, S.; Softic, S.; Deng, L.; Bry, L.; Gordon, J.I.; Kahn,C.R. Interactions between Gut Microbiota, Host Genetics and Diet Modulate thePredisposition to Obesity and Metabolic Syndrome. Cell Metab. 2015, 22,516–530.

100. Goodrich, J.K.; Waters, J.L.; Poole,A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.;Knight, R.; Bell, J.T.; et al. Human Genetics Shape the Gut Microbiome. Cell2014, 159, 789–799.

101. Liu, R.; Hong, J.; Xu, X.; Feng, Q.;Zhang, D.; Gu, Y.; Shi, J.; Zhao, S.; Liu, W.; Wang, X.; et al. Gut microbiomeand serum metabolome alterations in obesity and after weight-loss intervention.Nat. Med. 2017, 23, 859–868.

102. Bodenlos, J.S.; Schneider, K.L.;Oleski, J.; Gordon, K.; Rothschild, A.J.; Pagoto, S.L. Vagus nerve stimulationand food intake: Effect of body mass index. J. Diabetes Sci. Technol. 2014, 8,590–595.

103. Meng, F.; Han, Y.; Srisai, D.;Belakhov, V.; Farias, M.; Xu, Y.; Palmiter, R.D.; Baasov, T.; Wu, Q. Newinducible genetic method reveals critical roles of GABA in the control offeeding and metabolism. Proc. Natl. Acad. Sci. USA 2016, 113, 3645–3650.

104. Schellekens, H.; Dinan, T.G.; Cryan,J.F. Lean mean fat reducing “ghrelin” machine: Hypothalamic ghrelin and ghrelinreceptors as therapeutic targets in obesity. Neuropharmacology 2010, 58, 2–16.

105. Heisler, L.K.; Jobst, E.E.; Sutton,G.M.; Zhou, L.; Borok, E.; Thornton-Jones, Z.; Liu, H.Y.; Zigman, J.M.;Balthasar, N.; Kishi, T.; et al. Serotonin Reciprocally Regulates MelanocortinNeurons to Modulate Food Intake. Neuron 2006, 51, 239–249.

106. Xu, Y.; Jones, J.E.; Kohno, D.;Williams, K.W.; Lee, C.E.; Choi, M.J.; Anderson, J.G.; Heisler, L.K.; Zigman,J.M.; Lowell, B.B.; et al. 5-HT2CRs expressed by pro-opiomelanocortin neuronsregulate energy homeostasis. Neuron 2008, 60, 582–589.

107. Sandhu, K.V.; Sherwin, E.;Schellekens, H.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Feeding themicrobiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl. Res.2016, 179, 223–244.

108. Everard, A.; Cani, P.D. Gut microbiotaand GLP-1. Rev. Endocr. Metab. Disord. 2014, 15, 189–196.

109. Niwa, T.; Takeda, N.; Tatematsu, A.;Maeda, K. Accumulation of indoxyl sulfate, an inhibitor of drug-binding, inuremic serum as demonstrated by internal-surface reversed-phase liquidchromatography. Clin. Chem. 1988, 34, 2264–2267.

110. Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu,M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir,M.; Zhang, S.; et al. The short-chain fatty acid acetate reduces appetite via acentral homeostatic mechanism. Nat. Commun. 2014, 5, 3611.

111. Perry, R.J.; Peng, L.; Barry, N.A.Acetate mediates a microbiome-brain-beta-cell axis to promote metabolicsyndrome. Nature 2016, 534, 213–217.

112. Swartz, T.D.; Duca, F.A.; de Wouters,T.; Sakar, Y.; Covasa, M. Up-regulation of intestinal type 1 taste receptor 3and sodium glucose luminal transporter-1 expression and increased sucroseintake in mice lacking gut microbiota. Br. J. Nutr. 2012, 107, 621–630.

原文鏈接:https://www.mdpi.com/2076-2607/7/10/456/htm#B66-microorganisms-07-00456

作者|Kaliyan Barathikannan 等人

翻譯|gemiu

審校|617

編輯|崔心偉

萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

投稿/轉(zhuǎn)載

聯(lián)系人:胡瀟航

微信號:13011291868

萬字強(qiáng)文:深度剖析益生菌與肥胖(上)(益生菌與肥胖的關(guān)系)

相關(guān)新聞

聯(lián)系我們
聯(lián)系我們
公眾號
公眾號
在線咨詢
分享本頁
返回頂部